Finite difference schemes for the symmetric Keyfitz–Kranzer system
نویسندگان
چکیده
منابع مشابه
Nonstandard finite difference schemes for differential equations
In this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (NSFDs). Numerical examples confirming then efficiency of schemes, for some differential equations are provided. In order to illustrate the accuracy of the new NSFDs, the numerical results are compared with ...
متن کاملnonstandard finite difference schemes for differential equations
in this paper, the reorganization of the denominator of the discrete derivative and nonlocal approximation of nonlinear terms are used in the design of nonstandard finite difference schemes (nsfds). numerical examples confirming then efficiency of schemes, for some differential equations are provided. in order toillustrate the accuracy of the new nsfds, the numerical results are compared with s...
متن کاملSolving a system of 2D Burgers' equations using Semi-Lagrangian finite difference schemes
In this paper, we aim to generalize semi-Lagrangian finite difference schemes for a system of two-dimensional (2D) Burgers' equations. Our scheme is not limited by the Courant-Friedrichs-Lewy (CFL) condition and therefore we can apply larger step size for the time variable. Proposed schemes can be implemented in parallel very well and in fact, it is a local one-dimensional (LOD) scheme which o...
متن کاملFinite-Difference Schemes for the Diffusion Equation
Abst rac t . The Crank-Nicolson scheme is widely used to solve numerically the diffusion equation, because of its good stability properties. It is, however, ill-behaved when large time-steps are used: the short wave-lengths may happen to be less damped than the long ones. A detailed analysis of this flaw is performed and an Mternative scheme is proposed, which removes this difficulty while pres...
متن کاملContractive Difference Schemes for Symmetric Hyperbolic Systems
Consider the initial-value problem for a constant-coefficient symmetric hyperbolic system with initial-values vanishing in a half-space. Consider also a finite difference operator consistent with the system. Conditions are given in terms of the orders of dissipation and accuracy which ensure that the solution of the discrete problem tends to zero exponentially with the mesh-width in half-spaces...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Zeitschrift für angewandte Mathematik und Physik
سال: 2012
ISSN: 0044-2275,1420-9039
DOI: 10.1007/s00033-012-0292-y